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Abstract— A Software Development Life Cycle Model (or 
SDLC Model) is an abstraction of the period of time that 
starts when software product is conceived and ends when a 
product is no longer available for use. Feature selection 
attempts to discover the most discriminative information in 
several application domains. Binary Bat Algorithm (BBA: a 
binary version of the Bat Algorithm) is a new nature-inspired 
feature selection technique based on the bats behaviour. In 
this paper, various SDLC Models (already existing ones) have 
been worked upon to rank all these and find the most accurate 
model with the help of BBA. 
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I. INTRODUCTION 
In software engineering, a Software Development 
Methodology (also known as a Software Development Life 
Cycle) is a division of software development work into 
distinct phases (or stages) containing activities with the 
objective of achieving better planning and management. It 
is often considered a subset of the Systems Development 
Life Cycle. A Software Development Life Cycle Model is 
an abstraction of a software process. It can also be defined 
as abstraction of the period of time that starts when 
software product is conceived and ends when a product is 
no longer available for use.  
Common SDLC models include waterfall, prototyping, 
iterative and incremental development, spiral, rapid 
application development and various types of agile 
methodology. Each model has its pros and cons and thus, 
depending on various factors, a model can be termed 
appropriate for a software production. 
BBA is a new and theoretical algorithm which, as of now, 
is the hot algorithm in the optimization field. It is a meta-
heuristic algorithm, i.e., a higher level procedure aimed to 
find, generate, or select a heuristic (partial search 
algorithm) that may provide a adequately good solution to 
an optimization problem, especially with incomplete or 
imperfect information or limited computation capacity. 
In this paper, we have used BBA algorithm solely for the 
purpose of ranking of SDLC models and finding the most 
accurate SDLC model. 

II. BINARY BAT ALGORITHM (BBA)
R. Y. M. Nakamura, L. A. M. Pereira in their paper, 
[1][2]Binary Bat Algorithm for [3] [5]Feature Selection 
modified the Bat Algorithm proposed by Yang for the 
purpose of feature selection. In Bat algorithm, as proposed 
by Yang, each bat moves in the search space heading to the 
continuous-valued positions. However, in case of feature 

selection, the search space is modelled as a - dimensional 
Boolean lattice, in which the bat travels across the corners 
of a hypercube. Since the problem is to determine whether 
a given feature is selected or not, the bat’s position is then 
represented by binary vectors. 
They proposed a binary version of the Xang’s Bat 
Algorithm restricting the new bat’s position to only binary 
values (presence/absence) using a sigmoid function: 

S(vi
j)= 1/ (1+ exp(-vi

j)) 
Based on the equation above, they modified the position of 
the bat in the search space. The position was restricted to 
only {0,1} indicating absence or presence of a feature 
respectively. Each bat is associated with a velocity that 
indicates the rate at which the feature changes. The 
confinement of search space to Boolean lattice makes it 
applicable to real world and thus, allows implemented for 
real world problems. 

Algorithm.1. - FEATURE SELECTION USING BBA 
INPUT:   Labelled training ܼ1 and evaluating 

  set ܼ2, population size ݉, number 
  of features ݊, number of iterations 
  ܶ, loudness ܣ, pulse emission rate 
 .values ߛ and ߙ ,߳ ,ݎ  

OUTPUT:         Subset of features ܨ that gives the 
        maximum accuracy over ܼ2. 

AUXILIARY:  Fitness vector ݂݅ݐ of size ݉, initial 
  frequency vector 0ݎ of size ݉, 
  global best position vector Ԧݔ of 
  size ݊, and variables ܽܿܿ, ݀݊ܽݎ, 
 ,ߚ ,ݐ݂݈ܾ݅ܽ݋݈݃ ,ݔ݁݀݊݅ݔܽ݉ ,ݐ݂݅ݔܽ݉  
  ݂max, ݂min. 

1. For each bat ܾ݅ (∀݅ = 1..., ݉), do
2. For each feature ݆ (∀݆ = 1..., ݊), do
3. Random {0, 1} ← ݆ݔ
4. 0 ← ݆ݒ
5. [2 ,1] ݉݋ܴ݀݊ܽ ← ݅ܣ
6. [1 ,0] ݉݋ܴ݀݊ܽ ← ݅ݎ
7. ∞− ← ݅ݐ݂݅
8. ∞− ←   ݐ݂݈ܾ݅ܽ݋݈݃
9. For each iteration (ܶ ,...1 = ݐ) ݐ, do
10. For each bat ܾ݅ (∀݅ = 1..., ݉), do
11. Create ܼ’1 and ܼ’2 from ܼ1 and ܼ2, respectively,
12. such that both contains only features in ܾ݅ in
13. which ݅ݔj ∕= 0, ∀݆ = 1, . . ., ݊. 

14. Train classifier over ܼ’1, evaluate its over ܼ’2
15. and stores the accuracy in ܽܿܿ. 
Random [0, 1] ← ݀݊ܽݎ .16
17. If (݅ܣ > ݀݊ܽݎ and ܽܿܿ > ݂݅݅ݐ), then
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 ܿܿܽ ← ݅ݐ݂݅ .18
 ݅ܣߙ ← ݅ܣ .19
 [(ݐߛ−)݌ݔ݁ − 1] 0 ݅	ݎ ← ݅ݎ .20
 (ݐ݂݅)ݔܽ݉ ← [ݔ݁݀݊݅ݔܽ݉	,ݐ݂݅ݔܽ݉] .21
22. If (݉ܽݐ݂݈ܾ݅ܽ݋݈݃ < ݐ݂݅ݔ), then 
 ݐ݂݅ݔܽ݉ ← ݐ݂݈ܾ݅ܽ݋݈݃ .23
24. For each dimension ݆ (∀݆ = 1, . . ., ݉), do 
 ݔ݁݀݊݅ݔ݆ܽ݉ݔ ← ݆ˆݔ .25

26. For each bat ܾ݅ (∀݅ = 1, . . ., ݉), do 
 Random [0, 1] ← ߚ .27
 Random [0, 1] ← ݀݊ܽݎ .28
29. If (݅ݎ < ݀݊ܽݎ) 
30. For each feature ݆ (∀݆ = 1, . . ., ݊), do 
 ܣ߳ + ݆݅ݔ = ݆݅ݔ .31
 Random {0, 1} ← ߪ .32
33. If (𝜎 <1/ (1+ exp(-vi

j))), then 
 1 ← ݆݅ݔ .34
35. else 0 ←݆݅ݔ 
 Random [0, 1] ← ݀݊ܽݎ .36
37. If (݅ܣ > ݀݊ܽݎ and ݂݅ݐ݂݈ܾ݅ܽ݋݈݃ > ݅ݐ), then 
38. For each feature ݆ (∀݆ = 1, . . ., ݊), do 
39. ݂݅ ← ݂min + (݂max − ݂min)	ߚ 
 ݂݅ (݆݅ݔ − ݆ˆݔ) + ݆݅ݒ ←݆݅ݒ .40
 ݆݅ݒ + ݆݅ݔ ←݆݅ݔ .41
 Random {0, 1} ← ߪ .42
43 If (𝜎 <1/ (1+ exp(-vi

j))), then 
 1 ←݆݅ݔ .44
45. else 0 ←݆݅ݔ 
46. For each feature ݆ (∀݆ = 1, . . ., ݊), do 
 ݆ˆݔ ← ݆ܨ .47
48. Return ܨ. 
 
The first loop in line 1-7 initializes the population of bats. 
The bat’s position is then initialized with randomly chosen 
binary values in Lines 2-3, which corresponds whether a 
feature will be selected or not to compose the new dataset.  
Lines 11-15 compose new [4]training and evaluating sets 
with selected features, and Line 17-22 evaluate each bat in 
order to update its fitness value. Moreover, the loudness Ai 

and pulse rate emission ri are updated if a new solution 
have been updated. While loudness decreases once the bat 
finds its prey, the pulse rate emission increases. In Line 
21, the function max outputs the index and the fitness 
value of the bat that maximizes the fitness function.  
Line 22-25 update the global best position, i.e., x̂ with the 
position of the bat that has achieved highest fitness 
function. The loop in Lines 26-45 is responsible for 
updating bat’s position and velocity. 
The source code in Lines 29-35 performs the local search. 
At line 39, we update the frequency. In their paper, the 
proposed fmin and fmax are 0 and 1 respectively. We have not 
modified these values in our project and have continued 
with these values only. 
 

III. MODEL SELECTION ALGORITHM 
The [3]feature selection algorithm given in section II is a 
random algorithm which needs experimental data to obtain 

a permanent solution. Owing to its random nature, it gives a 
different solution each time it is implemented. Thus, we 
have devised a model selection algorithm and used the 
experimental data from the above algorithm as its basis. 
Thus, it can be said that the algorithm given below is not an 
independent algorithm but is dependent on the algorithm 
for its implementation. 
 
Algorithm.2. - MODEL SELECTION ALGORITHM 
INPUT:        The number of model, m, name of 
        each model, name, factors present in 
        the model, fact[n], where n is the 
 same as in algorithm above. It also consists of 

another array, 
        fact_main[x], which represents the 
        number of features of each   

feature dataset present in the model.   x is the 
number of dataset present. Feature [], set of 
optimal features, obtained. 

OUTPUT:   The best model amongst the initialized ones. 
For each model i (�∀i=1,2,3……, m), do             

1.       For each model feature j (∀j=1, 2…., n), do 

2.         facti[j]        Assign attributes present in  
model 

3.         namei        Initialize name of model 
4.         fact_maini        Initialise this array 
5.  For each model i  (�∀i=1,2,3……,m), do 
6.         Sumi: = 0 
7.         For each model feature set j (∀j=1, 2….,  x), 

do 
8.         Sumi        Sumi + (fact_maini[j] /global[j]) 
9.  BestModel (mod, m) 
 
In the algorithm.2, in Lines 1-5, each model is initialized 
with name, factors present in it and the number of attributes 
of each dataset present in it. 
In Lines 6-9, the sum of attributes of each model is 
calculated and stored in the variable Sum, associated with 
each model. 
The function BestModel (mod, m) is invoked in Line 10, 
which finds the model with maximum number of features 
present from the optimal models and considers it the best 
among the models present. 
The algorithms above finally solve the problem at hand, 
and give us the best SDLC Model among the ones present. 
In our implementation, we have considered only 6 already 
existing models and have worked upon them. Although, 
considering the scope of this project, we can extend the 
application to be of more dynamic nature, i.e. user will be 
able to select the features upon which he wants to evaluate 
a model and also create a model himself. 
 

IV. EVALUATION AND ASSESSMENT 
Seven major features namely Efficiency, Effectiveness, 
Satisfaction, Memorability, Security, Universality, and 
Productivity were used to judge the models and rank them 
accordingly. These seven major factors were bifurcated into 
23 sub-features whose presence or absence judged the 
SDLC models considered for evaluation. 
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Figure 1. shows a line graph representing the count of 
different sub-features that are used to distinguish different 
SDLC models. Each line represents a major feature. The 
values, however, depicts the number of sub-features that 
are used out of the total count of sub-features for a major 
feature. Each SDLC model is judged on the basis of these 
selected features. 
 

 
Figure.1: No of occurrences of features 

 
A questionnaire was prepared was conducted as a survey to 
identify the presence or absence of the features in the 
different SDLC models which were being worked upon. 
The questionnaire can be viewed at 
https://megacloud.io/b57b225a35aca0b6 Table 1. 
Demonstrates the final ranking of the models been worked 
upon along with their calculated accuracies. The accuracies 

were calculated on the basis of the result obtained after 
running [2]BBA on a set of features, and then running 
Algorithm 2 on that set of features. 

 
Table 1: Ranking of SDLC models 

 
 

V. CONCLUSIONS 
In this paper, various Software Development Life Cycle 
Models (already existing ones) were worked upon. The 
result shows the ranking of sdlc models and the most 
accurate model with the help of Binary Bat Algorithm. The 
factors upon which the aptness of all the SDLC models 
under consideration can be evaluated were identified in this 
project with the help of surveys and questionnaires. 
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Spiral Model 0.915 1 

Iterative Model 0.7095 2 

RAD Model 0.6132 3 

Prototype Model 0.55545 4 

Waterfall Model 0.53225 5 

Build & Fix Model 0.14439 6 
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