
Ranking SDLC Models using BBA
Aakash Singhal, Aman Agrawal, Jatin Makkar

Students, CSE Department
MAIT, GGSIP University

Delhi, India

Abstract— A Software Development Life Cycle Model (or
SDLC Model) is an abstraction of the period of time that
starts when software product is conceived and ends when a
product is no longer available for use. Feature selection
attempts to discover the most discriminative information in
several application domains. Binary Bat Algorithm (BBA: a
binary version of the Bat Algorithm) is a new nature-inspired
feature selection technique based on the bats behaviour. In
this paper, various SDLC Models (already existing ones) have
been worked upon to rank all these and find the most accurate
model with the help of BBA.

Keywords— SDLC, Feature Selection, BBA, Best SDLC
Model, Evaluating SDLC, Questionnaire SDLC, Training and
Evaluating SDLC Models.

I. INTRODUCTION
In software engineering, a Software Development
Methodology (also known as a Software Development Life
Cycle) is a division of software development work into
distinct phases (or stages) containing activities with the
objective of achieving better planning and management. It
is often considered a subset of the Systems Development
Life Cycle. A Software Development Life Cycle Model is
an abstraction of a software process. It can also be defined
as abstraction of the period of time that starts when
software product is conceived and ends when a product is
no longer available for use.
Common SDLC models include waterfall, prototyping,
iterative and incremental development, spiral, rapid
application development and various types of agile
methodology. Each model has its pros and cons and thus,
depending on various factors, a model can be termed
appropriate for a software production.
BBA is a new and theoretical algorithm which, as of now,
is the hot algorithm in the optimization field. It is a meta-
heuristic algorithm, i.e., a higher level procedure aimed to
find, generate, or select a heuristic (partial search
algorithm) that may provide a adequately good solution to
an optimization problem, especially with incomplete or
imperfect information or limited computation capacity.
In this paper, we have used BBA algorithm solely for the
purpose of ranking of SDLC models and finding the most
accurate SDLC model.

II. BINARY BAT ALGORITHM (BBA)
R. Y. M. Nakamura, L. A. M. Pereira in their paper,
[1][2]Binary Bat Algorithm for [3] [5]Feature Selection
modified the Bat Algorithm proposed by Yang for the
purpose of feature selection. In Bat algorithm, as proposed
by Yang, each bat moves in the search space heading to the
continuous-valued positions. However, in case of feature

selection, the search space is modelled as a - dimensional
Boolean lattice, in which the bat travels across the corners
of a hypercube. Since the problem is to determine whether
a given feature is selected or not, the bat’s position is then
represented by binary vectors.
They proposed a binary version of the Xang’s Bat
Algorithm restricting the new bat’s position to only binary
values (presence/absence) using a sigmoid function:

S(vi
j)= 1/ (1+ exp(-vi

j))
Based on the equation above, they modified the position of
the bat in the search space. The position was restricted to
only {0,1} indicating absence or presence of a feature
respectively. Each bat is associated with a velocity that
indicates the rate at which the feature changes. The
confinement of search space to Boolean lattice makes it
applicable to real world and thus, allows implemented for
real world problems.

Algorithm.1. - FEATURE SELECTION USING BBA
INPUT: Labelled training ܼ1 and evaluating

 set ܼ2, population size ݉, number
 of features ݊, number of iterations
 ܶ, loudness ܣ, pulse emission rate
 .values ߛ and ߙ ,߳ ,ݎ

OUTPUT: Subset of features ܨ that gives the
 maximum accuracy over ܼ2.

AUXILIARY: Fitness vector ݂݅ݐ of size ݉, initial
 frequency vector 0ݎ of size ݉,
 global best position vector Ԧݔ of
 size ݊, and variables ܽܿܿ, ݀݊ܽݎ,
 ,ߚ ,ݐ݂݈ܾ݅ܽ݋݈݃ ,ݔ݁݀݊݅ݔܽ݉ ,ݐ݂݅ݔܽ݉
 ݂max, ݂min.

1. For each bat ܾ݅ (∀݅ = 1..., ݉), do
2. For each feature ݆ (∀݆ = 1..., ݊), do
3. Random {0, 1} ← ݆ݔ
4. 0 ← ݆ݒ
5. [2 ,1] ݉݋ܴ݀݊ܽ ← ݅ܣ
6. [1 ,0] ݉݋ܴ݀݊ܽ ← ݅ݎ
7. ∞− ← ݅ݐ݂݅
8. ∞− ← ݐ݂݈ܾ݅ܽ݋݈݃
9. For each iteration (ܶ ,...1 = ݐ) ݐ, do
10. For each bat ܾ݅ (∀݅ = 1..., ݉), do
11. Create ܼ’1 and ܼ’2 from ܼ1 and ܼ2, respectively,
12. such that both contains only features in ܾ݅ in
13. which ݅ݔj ∕= 0, ∀݆ = 1, . . ., ݊.

14. Train classifier over ܼ’1, evaluate its over ܼ’2
15. and stores the accuracy in ܽܿܿ.
Random [0, 1] ← ݀݊ܽݎ .16
17. If (݅ܣ > ݀݊ܽݎ and ܽܿܿ > ݂݅݅ݐ), then

Aakash Singhal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5300-5302

www.ijcsit.com 5300

 ܿܿܽ ← ݅ݐ݂݅ .18
 ݅ܣߙ ← ݅ܣ .19
 [(ݐߛ−)݌ݔ݁ − 1] 0 ݅	ݎ ← ݅ݎ .20
 (ݐ݂݅)ݔܽ݉ ← [ݔ݁݀݊݅ݔܽ݉	,ݐ݂݅ݔܽ݉] .21
22. If (݉ܽݐ݂݈ܾ݅ܽ݋݈݃ < ݐ݂݅ݔ), then
 ݐ݂݅ݔܽ݉ ← ݐ݂݈ܾ݅ܽ݋݈݃ .23
24. For each dimension ݆ (∀݆ = 1, . . ., ݉), do
 ݔ݁݀݊݅ݔ݆ܽ݉ݔ ← ݆ˆݔ .25

26. For each bat ܾ݅ (∀݅ = 1, . . ., ݉), do
 Random [0, 1] ← ߚ .27
 Random [0, 1] ← ݀݊ܽݎ .28
29. If (݅ݎ < ݀݊ܽݎ)
30. For each feature ݆ (∀݆ = 1, . . ., ݊), do
 ܣ߳ + ݆݅ݔ = ݆݅ݔ .31
 Random {0, 1} ← ߪ .32
33. If (𝜎 <1/ (1+ exp(-vi

j))), then
 1 ← ݆݅ݔ .34
35. else 0 ←݆݅ݔ
 Random [0, 1] ← ݀݊ܽݎ .36
37. If (݅ܣ > ݀݊ܽݎ and ݂݅ݐ݂݈ܾ݅ܽ݋݈݃ > ݅ݐ), then
38. For each feature ݆ (∀݆ = 1, . . ., ݊), do
39. ݂݅ ← ݂min + (݂max − ݂min)	ߚ
 ݂݅ (݆݅ݔ − ݆ˆݔ) + ݆݅ݒ ←݆݅ݒ .40
 ݆݅ݒ + ݆݅ݔ ←݆݅ݔ .41
 Random {0, 1} ← ߪ .42
43 If (𝜎 <1/ (1+ exp(-vi

j))), then
 1 ←݆݅ݔ .44
45. else 0 ←݆݅ݔ
46. For each feature ݆ (∀݆ = 1, . . ., ݊), do
 ݆ˆݔ ← ݆ܨ .47
48. Return ܨ.

The first loop in line 1-7 initializes the population of bats.
The bat’s position is then initialized with randomly chosen
binary values in Lines 2-3, which corresponds whether a
feature will be selected or not to compose the new dataset.
Lines 11-15 compose new [4]training and evaluating sets
with selected features, and Line 17-22 evaluate each bat in
order to update its fitness value. Moreover, the loudness Ai

and pulse rate emission ri are updated if a new solution
have been updated. While loudness decreases once the bat
finds its prey, the pulse rate emission increases. In Line
21, the function max outputs the index and the fitness
value of the bat that maximizes the fitness function.
Line 22-25 update the global best position, i.e., x̂ with the
position of the bat that has achieved highest fitness
function. The loop in Lines 26-45 is responsible for
updating bat’s position and velocity.
The source code in Lines 29-35 performs the local search.
At line 39, we update the frequency. In their paper, the
proposed fmin and fmax are 0 and 1 respectively. We have not
modified these values in our project and have continued
with these values only.

III. MODEL SELECTION ALGORITHM
The [3]feature selection algorithm given in section II is a
random algorithm which needs experimental data to obtain

a permanent solution. Owing to its random nature, it gives a
different solution each time it is implemented. Thus, we
have devised a model selection algorithm and used the
experimental data from the above algorithm as its basis.
Thus, it can be said that the algorithm given below is not an
independent algorithm but is dependent on the algorithm
for its implementation.

Algorithm.2. - MODEL SELECTION ALGORITHM
INPUT: The number of model, m, name of
 each model, name, factors present in
 the model, fact[n], where n is the
 same as in algorithm above. It also consists of

another array,
 fact_main[x], which represents the
 number of features of each

feature dataset present in the model. x is the
number of dataset present. Feature [], set of
optimal features, obtained.

OUTPUT: The best model amongst the initialized ones.
For each model i (�∀i=1,2,3……, m), do

1. For each model feature j (∀j=1, 2…., n), do

2. facti[j] Assign attributes present in
model

3. namei Initialize name of model
4. fact_maini Initialise this array
5. For each model i (�∀i=1,2,3……,m), do
6. Sumi: = 0
7. For each model feature set j (∀j=1, 2…., x),

do
8. Sumi Sumi + (fact_maini[j] /global[j])
9. BestModel (mod, m)

In the algorithm.2, in Lines 1-5, each model is initialized
with name, factors present in it and the number of attributes
of each dataset present in it.
In Lines 6-9, the sum of attributes of each model is
calculated and stored in the variable Sum, associated with
each model.
The function BestModel (mod, m) is invoked in Line 10,
which finds the model with maximum number of features
present from the optimal models and considers it the best
among the models present.
The algorithms above finally solve the problem at hand,
and give us the best SDLC Model among the ones present.
In our implementation, we have considered only 6 already
existing models and have worked upon them. Although,
considering the scope of this project, we can extend the
application to be of more dynamic nature, i.e. user will be
able to select the features upon which he wants to evaluate
a model and also create a model himself.

IV. EVALUATION AND ASSESSMENT
Seven major features namely Efficiency, Effectiveness,
Satisfaction, Memorability, Security, Universality, and
Productivity were used to judge the models and rank them
accordingly. These seven major factors were bifurcated into
23 sub-features whose presence or absence judged the
SDLC models considered for evaluation.

Aakash Singhal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5300-5302

www.ijcsit.com 5301

Figure 1. shows a line graph representing the count of
different sub-features that are used to distinguish different
SDLC models. Each line represents a major feature. The
values, however, depicts the number of sub-features that
are used out of the total count of sub-features for a major
feature. Each SDLC model is judged on the basis of these
selected features.

Figure.1: No of occurrences of features

A questionnaire was prepared was conducted as a survey to
identify the presence or absence of the features in the
different SDLC models which were being worked upon.
The questionnaire can be viewed at
https://megacloud.io/b57b225a35aca0b6 Table 1.
Demonstrates the final ranking of the models been worked
upon along with their calculated accuracies. The accuracies

were calculated on the basis of the result obtained after
running [2]BBA on a set of features, and then running
Algorithm 2 on that set of features.

Table 1: Ranking of SDLC models

V. CONCLUSIONS
In this paper, various Software Development Life Cycle
Models (already existing ones) were worked upon. The
result shows the ranking of sdlc models and the most
accurate model with the help of Binary Bat Algorithm. The
factors upon which the aptness of all the SDLC models
under consideration can be evaluated were identified in this
project with the help of surveys and questionnaires.

REFERENCES
[1] Xin-She Yang: A New Metaheuristic Bat-Inspired Algorithm:

Department of Engineering, University of Cambridge, Trumping ton
Street, Cambridge CB2 1PZ, UK. (2010)

[2] R. Y. M. Nakamura, L. A. M. Pereira, K. A. Costa, D. Rodrigues, J. P.
Papa: BBA: A Binary Bat Algorithm for Feature Selection :
Department of Computing Sao Paulo State University ̃Bauru, Brazil.
 (2012)

[3] Douglas Rodrigues, Kelton A. P. Costa, Lu ́ıs A. M. Pereira: A
Wrapper Approach for Feature Selection based on Bat Algorithm
and Optimum-Path Forest: Department of Computing, Univ.
Universidad Estadual Paulist, and Bauru, Brazil. (2014)

[4] Planning Fitness Training Sessions Using the Bat Algorithm: Iztok
Fister Jr.1, Samo Rauter2, Karin Ljubiˇc Fister3, Dušan Fister1, and
Iztok Fister. (2013)

[5] Naïve-Bayes Guided Bat Algorithm for Feature Selection by
Ahmed Maji Taha, Adia Mustapha and Soong-Der Chen (2013)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

No.of occurences of Features

Efficiency Satisfaction Effectiveness

Universality Productivity Memorability

Security

SDLC MODEL ACCURACY RANKING

Spiral Model 0.915 1

Iterative Model 0.7095 2

RAD Model 0.6132 3

Prototype Model 0.55545 4

Waterfall Model 0.53225 5

Build & Fix Model 0.14439 6

Aakash Singhal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5300-5302

www.ijcsit.com 5302

